Aplikasi Molecularly Imprinted Polymer untuk Bioanalisis Senyawa Obat Application of molecularly imprinted polymers for bioanalysis of drug molecules
Main Article Content
Abstract
Determination of drug concentration in biological specimens, including blood, plasma, serum, urine, tissue, and feces is a critical aspect of bioanalysis. The increasing interest in research on drug molecules, both existing drugs and their metabolites, and new drug candidates shows that a new development approach is needed for their bioanalytical methods. Sample preparation is an important step to eliminate the influence of the matrix and improve the analytical performance of a method. Molecularly imprinted polymer (MIP) as a separation method with unique features that are selective to target molecules has been applied to various applications and benefits, especially when used as an adsorbent in preparation methods for the analysis of complex biological matrices. The purpose of this study was to provide an overview of the use of MIP in the bioanalysis of drug compounds. The method used in this study uses a review of articles related to the concept of bioanalysis and the application of MIP for the analysis of drug components in biological matrices. Based on the results of the study, there has been an increase in the number of studies on the development of MIP over the last decade. Investigations show satisfactory results in MIP-based bioanalysis methods. The results of the study show the superiority of MIP as a preparation method that has high accuracy, reproducibility, sensitivity, speed, and cost-effectiveness, which makes it suitable for clinical use. This study can be a preliminary for further research on the development of MIP for bioanalysis of drug molecules.
Keywords: bioanalysis; biological matrices; sample preparation; molecularly imprinted polymer
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in PharmaCine: Journal of Pharmacy, Medical and Health Science agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
PharmaCine : Journal of Pharmacy, Medical and Health Science by https://journal-hs.unsika.ac.id/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share, copy and redistribute the material in any medium or format
- Adapt, remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
References
1. Acquavia, M. A., Foti, L., Pascale, R., Nicolò, A., Brancaleone, V., Cataldi, T. R. I., Martelli, G., Scrano, L., & Bianco, G. (2021). Detection and quantification of Covid-19 antiviral drugs in biological fluids and tissues. Talanta, 224, 121862. https://doi.org/https://doi.org/10.1016/j.talanta.2020.121862
2. Alimohammadi, Z., & Pourmoslemi, S. (2021). Selective extraction of zolpidem from plasma using molecularly imprinted polymer followed by high performance liquid chromatography. Microchemical Journal, 162, 105844. https://doi.org/https://doi.org/10.1016/j.microc.2020.105844
3. Alvani-Alamdari, S., Jouyban, A., Khoubnasabjafari, M., Nokhodchi, A., & Rahimpour, E. (2019). Efficiency Comparison of Nylon-6-Based Solid-Phase and Stir Bar Sorptive Extractors for Carbamazepine Extraction. Bioanalysis, 11(9), 899–911. https://doi.org/10.4155/bio-2018-0321
4. Amlashi, H. S., Daryasari, A. P., & Soleimani, M. (2019). Molecularly Imprinted Polymer Solid Phase Extraction followed by High-Performance Liquid Chromatography as an Efficient and Sensitive Technique for Determination of Meropenem in Human Plasma and Urine. South African Journal of Chemistry, 72, 32–39. https://doi.org/10.17159/0379-4350/2019/v72a5
5. Ansari, S., & Karimi, M. (2017). Synthesis and application of molecularly imprinted polymer for highly selective solid phase extraction trace amount of sotalol from human urine samples: Optimization by central composite design (CCD). Medicinal Chemistry Research, 26(10), 2477–2490. https://doi.org/10.1007/s00044-017-1947-1
6. Apffel, A., Zhao, L., & Sartain, M. J. (2021). A novel solid phase extraction sample preparation method for lipidomic analysis of human plasma using liquid chromatography/mass spectrometry. Metabolites, 11(5). https://doi.org/10.3390/metabo11050294
7. Arabi, M., Ghaedi, M., Ostovan, A., & Wang, S. (2016). Synthesis of lab-in-a-pipette-tip extraction using hydrophilic nano-sized dummy molecularly imprinted polymer for purification and analysis of prednisolone. Journal of Colloid and Interface Science, 480, 232–239. https://doi.org/https://doi.org/10.1016/j.jcis.2016.07.017
8. Arabi, M., Ostovan, A., Reza, A., Guo, X., Wang, L., Li, J., Wang, X., Li, B., & Chen, L. (2020). Trends in Analytical Chemistry Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. 128.
9. Asiabi, H., Yamini, Y., Seidi, S., & Ghahramanifard, F. (2016). Preparation and evaluation of a novel molecularly imprinted polymer coating for selective extraction of indomethacin from biological samples by electrochemically controlled in-tube solid phase microextraction. Analytica Chimica Acta, 913, 76–85. https://doi.org/https://doi.org/10.1016/j.aca.2016.01.060
10. Badawy, M. E. I., El-Nouby, M. A. M., Kimani, P. K., Lim, L. W., & Rabea, E. I. (2022). A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Analytical Sciences, 38(12), 1457–1487. https://doi.org/10.1007/s44211-022-00190-8
11. Bagheri, H., Molaei, K., Asgharinezhad, A. A., Ebrahimzadeh, H., & Shamsipur, M. (2016). Magnetic molecularly imprinted composite for the selective solid-phase extraction of p-aminosalicylic acid followed by high-performance liquid chromatography with ultraviolet detection. Journal of Separation Science, 39(21), 4166–4174. https://doi.org/https://doi.org/10.1002/jssc.201600865
12. Banan, K., Ghorbani-Bidkorbeh, F., Afsharara, H., Hatamabadi, D., Landi, B., Keçili, R., & Sellergren, B. (2022). Nano-sized magnetic core-shell and bulk molecularly imprinted polymers for selective extraction of amiodarone from human plasma. Analytica Chimica Acta, 1198, 339548. https://doi.org/https://doi.org/10.1016/j.aca.2022.339548
13. Barati, A., Kazemi, E., Dadfarnia, S., & Haji Shabani, A. M. (2017). Synthesis/characterization of molecular imprinted polymer based on magnetic chitosan/graphene oxide for selective separation/preconcentration of fluoxetine from environmental and biological samples. Journal of Industrial and Engineering Chemistry, 46, 212–221. https://doi.org/https://doi.org/10.1016/j.jiec.2016.10.033
14. Boukadida, M., Anene, A., Jaoued-Grayaa, N., Chevalier, Y., & Hbaieb, S. (2022). Choice of the functional monomer of molecularly imprinted polymers: Does it rely on strong acid-base or hydrogen bonding interactions? Colloids and Interface Science Communications, 50(August), 100669. https://doi.org/10.1016/j.colcom.2022.100669
15. Boukadida, M., Jaoued-Grayaa, N., Anene, A., Chevalier, Y., & Hbaieb, S. (2023). Effect of cross-linking agents on the adsorption of histamine on molecularly imprinted polyacrylamide. Polymer, 268, 125724. https://doi.org/https://doi.org/10.1016/j.polymer.2023.125724
16. Boyanton Jr, B. L., & Blick, K. E. (2002). Stability Studies of Twenty-Four Analytes in Human Plasma and Serum. Clinical Chemistry, 48(12), 2242–2247. https://doi.org/10.1093/clinchem/48.12.2242
17. Chen, L., Xu, S., & Li, J. (2011). Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews, 40(5), 2922–2942. https://doi.org/10.1039/C0CS00084A
18. Cheong, W. J., Yang, S. H., & Ali, F. (2013). Molecular imprinted polymers for separation science: A review of reviews. Journal of Separation Science, 36(3), 609–628. https://doi.org/https://doi.org/10.1002/jssc.201200784
19. Díaz-Liñán, M. C., García-Valverde, M. T., Lucena, R., Cárdenas, S., & López-Lorente, A. I. (2021). Dual-template molecularly imprinted paper for the determination of drugs of abuse in saliva samples by direct infusion mass spectrometry. Microchemical Journal, 160, 105686. https://doi.org/https://doi.org/10.1016/j.microc.2020.105686
20. Dil, E. A., Doustimotlagh, A. H., Javadian, H., Asfaram, A., & Ghaedi, M. (2021). Nano-sized Fe3O4@SiO2-molecular imprinted polymer as a sorbent for dispersive solid-phase microextraction of melatonin in the methanolic extract of Portulaca oleracea, biological, and water samples. Talanta, 221, 121620. https://doi.org/https://doi.org/10.1016/j.talanta.2020.121620
21. Dong, C., Shi, H., Han, Y., Yang, Y., Wang, R., & Men, J. (2021). Molecularly imprinted polymers by the surface imprinting technique. European Polymer Journal, 145, 110231. https://doi.org/10.1016/J.EURPOLYMJ.2020.110231
22. Ebrahimi, B., Mozaffari, S., & Mohammadiazar, S. (2023). Pharmacokinetic study and the extraction efficiency of bulk and precipitated ibuprofen-imprinted polymer sorbents for gas chromatography and gas chromatography-mass spectrometry ibuprofen bio-analysis. Journal of Separation Science, 46(13), 2201031. https://doi.org/https://doi.org/10.1002/jssc.202201031
23. El-Beqqali, A., & Abdel-Rehim, M. (2016). Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: I. Determination of methadone in human plasma utilizing liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 936, 116–122. https://doi.org/https://doi.org/10.1016/j.aca.2016.07.001
24. El-Beqqali, A., Andersson, L. I., Jeppsson, A. D., & Abdel-Rehim, M. (2017). Molecularly imprinted polymer-sol-gel tablet toward micro-solid phase extraction: II. Determination of amphetamine in human urine samples by liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 1063, 130–135. https://doi.org/https://doi.org/10.1016/j.jchromb.2017.08.027
25. Elmongy, H., & Abdel-Rehim, M. (2016). Saliva as an alternative specimen to plasma for drug bioanalysis: A review. TrAC Trends in Analytical Chemistry, 83, 70–79. https://doi.org/https://doi.org/10.1016/j.trac.2016.07.010
26. Elugoke, S. E., Adekunle, A. S., Fayemi, O. E., Akpan, E. D., Mamba, B. B., Sherif, E.-S. M., & Ebenso, E. E. (2021). Molecularly imprinted polymers (MIPs) based electrochemical sensors for the determination of catecholamine neurotransmitters – Review. Electrochemical Science Advances, 1(2), e2000026. https://doi.org/https://doi.org/10.1002/elsa.202000026
27. Foroughirad, S., Haddadi-Asl, V., Khosravi, A., & Salami-Kalajahi, M. (2021). Effect of porogenic solvent in synthesis of mesoporous and microporous molecularly imprinted polymer based on magnetic halloysite nanotubes. Materials Today Communications, 26, 101780. https://doi.org/https://doi.org/10.1016/j.mtcomm.2020.101780
28. Giebułtowicz, J., Sobiech, M., Rużycka, M., & Luliński, P. (2019). Theoretical and experimental approach to hydrophilic interaction dispersive solid-phase extraction of 2-aminothiazoline-4-carboxylic acid from human post-mortem blood. Journal of Chromatography A, 1587, 61–72. https://doi.org/https://doi.org/10.1016/j.chroma.2018.12.028
29. Golker, K., & Nicholls, I. A. (2016). The effect of crosslinking density on molecularly imprinted polymer morphology and recognition. European Polymer Journal, 75, 423–430. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2016.01.008
30. Gorbani, Y., Yılmaz, H., & Basan, H. (2017). Spectrofluorimetric determination of atenolol from human urine using high-affinity molecularly imprinted solid-phase extraction sorbent. Luminescence, 32(8), 1391–1397. https://doi.org/https://doi.org/10.1002/bio.3335
31. Gröschl, M. (2017). Saliva: A Reliable Sample Matrix in Bioanalytics. Bioanalysis, 9(8), 655–668. https://doi.org/10.4155/bio-2017-0010
32. Gunawan, U., Ibrahim, S., Ivansyah, A. L., & Damayanti, S. (2023). Separation and analysis of triazole antifungal in biological matrices by liquid chromatography: a review. Pharmacia, 70(4), 1265–1281. https://doi.org/10.3897/PHARMACIA.70.E111511
33. Gunawan, U., Ibrahim, S., Ivansyah, A. L., & Damayanti, S. (2024). Unraveling multi-template molecularly imprinted polymer for selective extraction of triazole antifungals: Theoretical and experimental investigation. Reactive and Functional Polymers, 200. https://doi.org/10.1016/j.reactfunctpolym.2024.105915
34. Habibi, B., Rostamkhani, S., & Hamidi, M. (2018). Magnetic molecularly imprinted polymer nanoparticles for dispersive micro solid-phase extraction and determination of buprenorphine in human urine samples by HPLC-FL. Journal of the Iranian Chemical Society, 15(7), 1569–1580. https://doi.org/10.1007/s13738-018-1355-6
35. Hasanah, A. N., Rahayu, D., Pratiwi, R., Rostinawati, T., Megantara, S., Saputri, F. A., & Puspanegara, K. H. (2019). Extraction of atenolol from spiked blood serum using a molecularly imprinted polymer sorbent obtained by precipitation polymerization. Heliyon, 5(4). https://doi.org/10.1016/j.heliyon.2019.e01533
36. He, S., Zhang, L., Bai, S., Yang, H., Cui, Z., Zhang, X., & Li, Y. (2021). Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. European Polymer Journal, 143, 110179. https://doi.org/10.1016/J.EURPOLYMJ.2020.110179
37. Ingle, R. G., Zeng, S., Jiang, H., & Fang, W.-J. (2022). Current developments of bioanalytical sample preparation techniques in pharmaceuticals. Journal of Pharmaceutical Analysis, 12(4), 517–529. https://doi.org/https://doi.org/10.1016/j.jpha.2022.03.001
38. Jadoon, S., Karim, S., Akram, M. R., Kalsoom Khan, A., Zia, M. A., Siddiqi, A. R., & Murtaza, G. (2015). Recent Developments in Sweat Analysis and Its Applications. International Journal of Analytical Chemistry, 2015(1), 164974. https://doi.org/https://doi.org/10.1155/2015/164974
39. Jaoshani, P., & Daryasari, A. P. (2020). Synthesis of Molecularly Imprinted Polymer and Its Application as Solid-Phase Extraction Sorbent for Ceftazidime Determination in Human Serum and Urine Samples. Journal of Analytical Chemistry, 75(9), 1108–1115. https://doi.org/10.1134/S1061934820090129
40. Ji, A. J. (2019). Sample Preparation for LC-MS Bioanalysis of Urine, Cerebrospinal Fluid, Synovial Fluid, Sweat, Tears, and Aqueous Humor Samples. In Sample Preparation in LC‐MS Bioanalysis (pp. 225–237). https://doi.org/https://doi.org/10.1002/9781119274315.ch18
41. Ji, W.-H., Guo, Y.-S., Wang, X., & Guo, D.-S. (2018). A water-compatible magnetic molecularly imprinted polymer for the selective extraction of risperidone and 9-hydroxyrisperidone from human urine. Talanta, 181, 392–400. https://doi.org/https://doi.org/10.1016/j.talanta.2018.01.025
42. Jouyban, A., Farajzadeh, M. A., Afshar Mogaddam, M. R., Nemati, M., Khoubnasabjafari, M., & Jouyban-Gharamaleki, V. (2021). Molecularly imprinted polymer based-solid phase extraction combined with dispersive liquid–liquid microextraction using new deep eutectic solvent; selective extraction of valproic acid from exhaled breath condensate samples. Microchemical Journal, 161, 105772. https://doi.org/https://doi.org/10.1016/j.microc.2020.105772
43. Kaza, M., Karaźniewicz-Łada, M., Kosicka, K., Siemiątkowska, A., & Rudzki, P. J. (2019). Bioanalytical method validation: new FDA guidance vs. EMA guideline. Better or worse? Journal of Pharmaceutical and Biomedical Analysis, 165, 381–385. https://doi.org/https://doi.org/10.1016/j.jpba.2018.12.030
44. Liu, L., Aa, J., Wang, G., Yan, B., Zhang, Y., Wang, X., Zhao, C., Cao, B., Shi, J., Li, M., Zheng, T., Zheng, Y., Hao, G., Zhou, F., Sun, J., & Wu, Z. (2010). Differences in metabolite profile between blood plasma and serum. Analytical Biochemistry, 406(2), 105–112. https://doi.org/https://doi.org/10.1016/j.ab.2010.07.015
45. Locatelli, M., Tartaglia, A., Piccolantonio, S., Di Iorio, A. L., Sperandio, E., Ulusoy, I. H., Furton, G. K., & Kabir, A. (2019). Innovative Configurations of Sample Preparation Techniques Applied in Bioanalytical Chemistry: A Review. In Current Analytical Chemistry (Vol. 15, Issue 7, pp. 731–744). https://doi.org/http://dx.doi.org/10.2174/1573411015666190301145042
46. Lockard Conley, & Schwartz Robert. (2024, September 26). Blood | Definition, Composition, & Functions | Britannica. Britannica. https://www.britannica.com/science/blood-biochemistry
47. Mabrouk, M., Hammad, S. F., Abdella, A. A., & Mansour, F. R. (2020). Chitosan-based molecular imprinted polymer for extraction and spectrophotometric determination of ketorolac in human plasma. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 241, 118668. https://doi.org/https://doi.org/10.1016/j.saa.2020.118668
48. Madikizela, L., Tavengwa, N., & Pakade, V. E. (2017). Molecularly Imprinted Polymers for Pharmaceutical Compounds: Synthetic Procedures and Analytical Applications. In N. Cankaya (Ed.), Polymerization. IntechOpen. https://doi.org/10.5772/intechopen.71475
49. Madrakian, T., Haryani, R., Ahmadi, M., & Afkhami, A. (2015). Spectrofluorometric determination of venlafaxine in biological samples after selective extraction on the superparamagnetic surface molecularly imprinted nanoparticles. Analytical Methods, 7(2), 428–435. https://doi.org/10.1039/C4AY02144D
50. Manousi, N., & Samanidou, V. (2021). Green sample preparation of alternative biosamples in forensic toxicology. Sustainable Chemistry and Pharmacy, 20, 100388. https://doi.org/https://doi.org/10.1016/j.scp.2021.100388
51. Mathew, J., Sankar, P., & Varacallo, M. (2023). Physiology, Blood Plasma. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK531504/
52. Meng, J., & Wang, X. (2019). Microextraction by Packed Molecularly Imprinted Polymer Combined Ultra-High-Performance Liquid Chromatography for the Determination of Levofloxacin in Human Plasma. Journal of Chemistry, 2019(1), 4783432. https://doi.org/https://doi.org/10.1155/2019/4783432
53. Mirzajani, R., & Kardani, F. (2016). Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection. Journal of Pharmaceutical and Biomedical Analysis, 122, 98–109. https://doi.org/https://doi.org/10.1016/j.jpba.2016.01.046
54. Moein, M. M., El Beqqali, A., & Abdel-Rehim, M. (2017). Bioanalytical method development and validation: Critical concepts and strategies. Journal of Chromatography B, 1043, 3–11. https://doi.org/https://doi.org/10.1016/j.jchromb.2016.09.028
55. Moein, M. M., Javanbakht, M., Karimi, M., Akbari-adergani, B., & Abdel-Rehim, M. (2015). Three-phase molecularly imprinted sol–gel based hollow fiber liquid-phase microextraction combined with liquid chromatography–tandem mass spectrometry for enrichment and selective determination of a tentative lung cancer biomarker. Journal of Chromatography B, 995–996, 38–45. https://doi.org/https://doi.org/10.1016/j.jchromb.2015.05.005
56. Mujewar, I. N., Bhusnure, O. G., Jagtap, S. R., Gholve, S. B., Giram, P. S., & Savangikar, A. B. (2019). A Review on Bioanalytical Method Development and Various Validation Stages Involved In Method Development Using RP- HPLC. Journal of Drug Delivery and Therapeutics, 9(4-s), 789–795. https://doi.org/10.22270/jddt.v9i4-s.3422
57. Mulder, H. A., Cecil, T. I., Fines, C., Pearcy, A. C., & Halquist, M. S. (2023). Advancing the use of molecularly imprinted polymers in bioanalysis: the selective extraction of cotinine in human urine. Bioanalysis, 15(8), 465–477. https://doi.org/10.4155/bio-2023-0019
58. Murdaya, N., Triadenda, A. L., Rahayu, D., & Hasanah, A. N. (2022). A Review: Using Multiple Templates for Molecular Imprinted Polymer: Is It Good? In Polymers (Vol. 14, Issue 20). MDPI. https://doi.org/10.3390/polym14204441
59. Niu, J., Du, M., Wu, W., Yang, J., & Chen, Q. (2024). Advances in the selection of functional monomers for molecularly imprinted polymers: A review. Journal of Separation Science, 47(16), 2400353. https://doi.org/https://doi.org/10.1002/jssc.202400353
60. Panagiotopoulou, M., Beyazit, S., Nestora, S., Haupt, K., & Tse Sum Bui, B. (2015). Initiator-free synthesis of molecularly imprinted polymers by polymerization of self-initiated monomers. Polymer, 66, 43–51. https://doi.org/https://doi.org/10.1016/j.polymer.2015.04.012
61. Pichon, V., Delaunay, N., & Combès, A. (2020). Sample Preparation Using Molecularly Imprinted Polymers. Analytical Chemistry, 92(1), 16–33. https://doi.org/10.1021/acs.analchem.9b04816
62. Płotka-Wasylka, J., Szczepańska, N., de la Guardia, M., & Namieśnik, J. (2016). Modern trends in solid phase extraction: New sorbent media. TrAC Trends in Analytical Chemistry, 77, 23–43. https://doi.org/https://doi.org/10.1016/j.trac.2015.10.010
63. Podjava, A., & Šilaks, A. (2021). Synthesis and sorptive properties of molecularly imprinted polymer for simultaneous isolation of catecholamines and their metabolites from biological fluids. Journal of Liquid Chromatography & Related Technologies, 44(3–4), 181–188. https://doi.org/10.1080/10826076.2021.1874980
64. Poliwoda, A., & Wieczorek, P. P. (2022). Molecularly Imprinted Polymers as Useful Sorbents for Bioanalysis. In B. Buszewski & I. Baranowska (Eds.), Handbook of Bioanalytics (pp. 1047–1063). Springer International Publishing. https://doi.org/10.1007/978-3-030-95660-8_49
65. Rahimi, M., & Bahar, S. (2023). Preparation of a New Solid-Phase Microextraction Fiber Based on Molecularly Imprinted Polymers for Monitoring of Phenobarbital in Urine Samples. Journal of Chromatographic Science, 61(1), 87–95. https://doi.org/10.1093/chromsci/bmac001
66. Rose, C., Parker, A., Jefferson, B., & Cartmell, E. (2015). The Characterization of Feces and Urine: A Review of the Literature to Inform Advanced Treatment Technology. Critical Reviews in Environmental Science and Technology, 45(17), 1827–1879. https://doi.org/10.1080/10643389.2014.1000761
67. Sajini, T., & Mathew, B. (2021). A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open, 4, 100072. https://doi.org/10.1016/J.TALO.2021.100072
68. Salina, E., & Regazzoni, L. (2025). Protein Precipitation by Metal Hydroxides as a Convenient and Alternative Sample Preparation Procedure for Bioanalysis. Molecules, 30(1). https://doi.org/10.3390/molecules30010002
69. Saylan, Y., Akgönüllü, S., Yavuz, H., Ünal, S., & Denizli, A. (2019). Molecularly imprinted polymer based sensors for medical applications. In Sensors (Switzerland) (Vol. 19, Issue 6). MDPI AG. https://doi.org/10.3390/s19061279
70. Saylan, Y., Kılıç, S., & Denizli, A. (2024). Biosensing Applications of Molecularly Imprinted-Polymer-Based Nanomaterials. Processes 2024, Vol. 12, Page 177, 12(1), 177. https://doi.org/10.3390/PR12010177
71. Song, J. G., Baral, K. C., Kim, G. L., Park, J. W., Seo, S. H., Kim, D. H., Jung, D. H., Ifekpolugo, N. L., & Han, H. K. (2023). Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques. In Drug Delivery (Vol. 30, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/10717544.2023.2183816
72. Suzaei, F. M., Daryanavard, S. M., Abdel-Rehim, A., Bassyouni, F., & Abdel-Rehim, M. (2022). Recent molecularly imprinted polymers applications in bioanalysis. Chemical Papers 2022 77:2, 77(2), 619–655. https://doi.org/10.1007/S11696-022-02488-3
73. Terzopoulou, Z., Papageorgiou, M., Kyzas, G. Z., Bikiaris, D. N., & Lambropoulou, D. A. (2016). Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices. Analytica Chimica Acta, 913, 63–75. https://doi.org/https://doi.org/10.1016/j.aca.2016.01.059
74. Tu, X., Shi, X., Zhao, M., & Zhang, H. (2021). Molecularly imprinted dispersive solid-phase microextraction sorbents for direct and selective drug capture from the undiluted bovine serum. Talanta, 226, 122142. https://doi.org/https://doi.org/10.1016/j.talanta.2021.122142
75. Veloz Martínez, I., Ek, J. I., Ahn, E. C., & Sustaita, A. O. (2022). Molecularly imprinted polymers via reversible addition–fragmentation chain-transfer synthesis in sensing and environmental applications. RSC Advances, 12(15), 9186–9201. https://doi.org/10.1039/D2RA00232A
76. Wei, S., Li, J., Liu, Y., & Ma, J. (2016). Development of magnetic molecularly imprinted polymers with double templates for the rapid and selective determination of amphenicol antibiotics in water, blood, and egg samples. Journal of Chromatography A, 1473, 19–27. https://doi.org/https://doi.org/10.1016/j.chroma.2016.10.067
77. Wisnuwardhani, H. A., Ibrahim, S., Mukti, R. R., & Damayanti, S. (2022). Molecularly-Imprinted SERS: A Potential Method for Bioanalysis. In Scientia Pharmaceutica (Vol. 90, Issue 3). MDPI. https://doi.org/10.3390/scipharm90030054
78. Wong, G., Brinkman, A., Benefield, R. J., Carlier, M., De Waele, J. J., El Helali, N., Frey, O., Harbarth, S., Huttner, A., McWhinney, B., Misset, B., Pea, F., Preisenberger, J., Roberts, M. S., Robertson, T. A., Roehr, A., Sime, F. B., Taccone, F. S., Ungerer, J. P. J., … Roberts, J. A. (2014). An international, multicentre survey of β-lactam antibiotic therapeutic drug monitoring practice in intensive care units. Journal of Antimicrobial Chemotherapy, 69(5), 1416–1423. https://doi.org/10.1093/jac/dkt523
79. Wu, N., Luo, Z., Ge, Y., Guo, P., Du, K., Tang, W., Du, W., Zeng, A., Chang, C., & Fu, Q. (2016). A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. Journal of Pharmaceutical Analysis, 6(3), 157–164. https://doi.org/https://doi.org/10.1016/j.jpha.2016.01.004
80. Xia, L., Yang, J., Su, R., Zhou, W., Zhang, Y., Zhong, Y., Huang, S., Chen, Y., & Li, G. (2020). Recent Progress in Fast Sample Preparation Techniques. Analytical Chemistry, 92(1), 34–48. https://doi.org/10.1021/acs.analchem.9b04735
81. Yılmaz, H., & Basan, H. (2015). Development of a molecularly imprinted solid-phase extraction sorbent for the selective extraction of telmisartan from human urine. Journal of Separation Science, 38(8), 1433–1439. https://doi.org/https://doi.org/10.1002/jssc.201401349
82. Zafarghandi, S. S., Panahi, H. A., & Nezhati, M. N. (2022). Preparation of pH-Sensitive Molecularly Imprinted Polymer via Dual-Monomer for Selective Solid-Phase Extraction of Ribavirin from Human Urine and Pharmaceutical Samples. ChemistrySelect, 7(21), e202104038. https://doi.org/https://doi.org/10.1002/slct.202104038
83. Zheng, Y. Z., & Wang, S. (2019). Advances in antifungal drug measurement by liquid chromatography-mass spectrometry. Clinica Chimica Acta, 491, 132–145. https://doi.org/https://doi.org/10.1016/j.cca.2019.01.023